دانشگاه اراک
دانشکده علوم پایه-گروه فيزيک
کارشناسی ارشد ذرات بنيادی
عنوان:
جفت شدگی غيرعادی کوارک تاپ و توليد کوارک تاپ – پاد کوارک تاپ در شتابدهنده LHC
استاد راهنما:
دکتر کريم قربانی
پژوهشگر:
حميده پورمحمدی
پاييز1393
خداي من… خداي مهربان من…. خداي بيكران من…
سپاس مي‌گويم تورا… كه مهرباني‌ات بيكران است و وجودت مهربان‌تر از هر چيزي است كه آفريده‌اي…
خداوندا تو را حمد مي‌گويم كه فقط تو سزاوار حمد بي‌انتهاي مني…
شكرگزاريم براي توست… تويي كه خدايي‌ات بي حد است و من زبانم محدود….
تو را شكر مي‌گويم بابت وجودت كه آرامش بخش همه دل‌هاست…
اصلاً تو را مي‌پرستم بابت همه خوبي‌هاي نانوشته‌اي كه در حقم روا داشتي…. تويي كه هميشه و همه جا با من هستي…
شكراً لله…
تقديم به مهربان فرشتگانی که لحظات ناب باور بودن، لذت و غرور دانستن، جسارت خواستن، عظمت رسيدن و تمام تجربه های يکتا و زيبای زندگيم، مديون حضور سبز آنهاست
تقديم به خانواده عزيزم
استاد گرانقدر جناب آقاي دكتر قرباني
شما روشنايي بخش تاريکی جان هستی و ظلمت انديشه را نور می بخشی. چگونه سپاس گويم مهربانی و لطف تو را که سرشار از عشق و يقين است. چگونه سپاس گويم تاثير علم آموزی تو را که چراغ روشن هدايت را بر کلبه محقر وجودم فروزان ساخته است. آری در مقابل اين همه عظمت و شکوه تو مرا نه توان سپاس است و نه کلام وصف.
چکیده
كوارك تاپ با جرم تقريبي سنگينترين ذره شناخته شده مدل استاندارد است و بنابراين نقش اساسي را در جستجوي فيزيك جديد در بازي ميكند. بيشتر كواركهاي تاپ به صورت زوج و از طريق برهمكنش قوي توليد ميشوند. در اين پايان نامه ما يك عدم تقارن پس و پيش كه در توليد زوج كوارك تاپ اندازهگيري شده است را معرفي ميكنيم. در ادامه مدلهايي را براي توصيف اين عدم تقارن مورد مطالعه قرار ميدهيم و نيز محدوديتهايي كه اين مدلها براي توصيف عدم تقارن با آن مواجه هستند را بيان ميكنيم. همچنين نظريه ميدان موثر را كه بوسيله آن ميتوانيم همهي اثرات فيزيك جديد در توليد زوج كوارك تاپ را بيان كنيم مورد مطالعه قرار ميدهيم. در فصل سوم به محاسبه سطح مقطع توليد زوج كوارك تاپ در چارچوب مدل استاندارد در زير فرآيندهاي همجوشي گلوئون، خواهيم پرداخت. در محاسبه اين سطح مقطع ابتدا جرم كوارك تاپ را صفر قرار ميدهيم و محاسبات را ادامه ميدهيم و سپس با در نظر گرفتن جرم تاپ سطح مقطع را محاسبه كرده و میبینیم با ناچيز گرفتن جرم تاپ به سطح مقطع قبلي خواهيم رسيد. در انتهاي اين فصل سطح مقطع توليد زوج كوارك تاپ را براي فرآيند بدست ميآوريم. در بخش انتهايي سطح مقطع توليد زوج كوارك تاپ را با در نظر گرفتن سهم فيزيك جديد شركت كننده در توليد زوج كوارك تاپ محاسبه خواهيم كرد. اما چون توليد زوج كوارك تاپ در شتابدهنده بيشتر بوسيله فرآيند همجوشي گلوئون انجام ميشود، ما فقط سطح مقطع توليد زوج كوارك تاپ را با در نظر گرفتن شكل كلي ورتكس محاسبه خواهيم كرد.
فهرست مطالب
عنوان صفحه
فصل اول: مدل استاندارد ذرات بنيادي
1-1 مقدمه2
1-2 مدل استاندارد3
1-2-1 ذرات و نيروهاي بنيادي3
1-3 برچسب زني حالتهاي كوارك و لپتون7
1-4 لاگرانژي كوارك و لپتون10
1-5 13
1-6 كوارك تاپ16
1-6-1 ويژگيهاي كوارك تاپ16
1-6-2 توليد زوج كوارك تاپ از برهمكنشهاي قوي18
1-6-3 فرآيندهاي توليد كوارك تاپ منفرد20
1- 7 نقاط ضعف مدل استاندارد21
فصل دوم: اثرات فيزيك جديد در توليد
2-1 مقدمه24
2-2 انگيزههاي مطالعهي كوارك تاپ25
2-3 عدم تقارن پس و پيش26
2-3-1 مدلهاي ساده براي عدم تقارن27
2-4 پيش بيني عدم تقارن بار در 31
2-5 نظريه ميدان موثر32
2-5-1 نظريه فرمي براي فرآيندهاي لپتوني در انرژي پايين33
2-5-2 نظريه براي توليد 36
فصل سوم: محاسبات سطح مقطع در چارچوب مدل استاندارد
3-1 مقدمه40
3-2 معادله ديراك41
3-2-1 جوابهاي معادله ديراك براي ذره آزاد42
3-3 هيليسيتي و كايراليتي45
3-4 محاسبهي سطح مقطع زير – فرآيندهاي همجوشي گلوئون51
3-5 محاسبهي سطح مقطع فرآيند 68
فصل چهارم: محاسبات سطح مقطع همراه با تصحيحات فيزيك جديد
4-1 مقدمه71
4-2 ورتكس 72
4-3 محاسبهي سطح مقطع توليد با در نظر گرفتن شكل كلي ورتكس 72
4-4 نتايج عددي و بحث100
4-5 پیشنهادات101
مراجع102
چکيده و عنوان به زبان انگليسي
فهرست تصاوير

شکلصفحه
شکل (1-1)- ورتكس پايه كوارك گلوئون14
شکل (1-2)- قوانين فاينمن مربوط به انتشارگرهاي بوزونها و فرميونهاي مدل استاندارد 15
شکل (1-3) – قواعد فاينمن مربوط به توابع موج فرميونها (4 شكل بالا) و توابع موج گلوئونها (2 شكل پايين)15
شکل(1-4)- قواعد فاينمن از نظريه پيمانهاي قوي براي راس سه گلوئوني15
شکل (1-5)- واپاشي كوارك تاپ 17
شکل(1-6)- توليد كوارك تاپ در برهمكنشهاي قوي به صورت نابودي كوارك و پاد كوارك و همجوشي گلوئون 18
شکل(1-7)- فرآيندهاي توليد كوارك تاپ منفرد 20
شکل (2-1)- ناحيههاي مجاز براي سهمهاي فيزيك جديد در عدم تقارن كلي در تواترون و عدم تقارن بار كلي در 31
شکل (2-2)- واپاشي بتايي ميون 34
شکل (2-3)- تصحيح سطح مقطع مدل استاندارد در به دليل وجود و مقايسه با روش نظريه ميدان موثر38
شکل (3-1)- ورتكس الكترومغناطيسي50
شکل (3-2)- سه زير – فرآيند همجوشي گلوئون شركت كننده در توليد زوج كوارك تاپ52
شکل (3-3)- پراكندگي ذرات در چارچوب مركز جرم53
شکل (3-4)- دياگرام فاينمن مربوط به فرآيند68
شکل (4-1)- زير فرآيندهاي همجوشي گلوئون شركت كننده در توليد همراه با ورتكس موثر73
شکل (4-2)- مقايسه سطح مقطع جزئي برحسب كسينوس زاويه پراكندگي براي فرآيند در مدل استاندارد و در مدل استاندارد همراه با تصحيحات فيزيك جديد در انرژي مركز جرم 99
شکل (4-3)- مقايسه سطح مقطع جزئي برحسب كسينوس زاويه پراكندگي براي فرآيند در مدل استاندارد و در مدل استاندارد همراه با تصحيحات فيزيك جديد در انرژي مركز جرم 100
شکل (3-4)- مقايسه سطح مقطع جزئي برحسب كسينوس زاويه پراكندگي براي فرآيند در مدل استاندارد و در مدل استاندارد همراه با تصحيحات فيزيك جديد در انرژي مركز جرم 100
فهرست جدول
جدولصفحه
جدول (1-1) سطح مقطعهاي فرآيندهاي توليد زوج كوارك تاپ در انرژيهاي مركز جرم متفاوت19
جدول (1-2) از اندازهگيريهاي آزمايشگاهي تواترون و در اين جدول استفاده شده است. عدم قطعيت آماري، سيستماتيك و درخشندگي براي عدم قطعيت كل در ستون آخر اضافه شده است19
جدول (1-3) سطح مقطعهاي فرآيندهاي توليد كوارك تاپ منفرد با در با انرژي مركز جرم و و در تواترون با انرژي مركز جرم 21
جدول (2-1) مقادير اندازهگيري شده و پيش بيني شده مشاهدهپذيرها در توليد در تواترون28
فصل 1
مدل استاندارد ذرات بنيادي
1-1 مقدمه
درک حاضر از اجزای اصلی سازندهی ماده (ذرات بنیادی) و برهمکنشهای بین آنها توسط مدل استاندارد فیزیک ذرات توصیف میشود. نظریات و کشفیات تعداد زیادی از فیزیکدانها در طول قرن گذشته ، این تصویر چشمگیر را از ساختار اصلی ماده خلق کرده است. مدل استاندارد شامل فرمیون ها (کوارکها و لپتونها) که ماده قابل مشاهده را تشکیل میدهند، و بوزون ها (فوتونها، گلوئونها، و ) که مسئول برهمکنش بین ذرات میباشند، است. مدل استاندارد تا زمان حاضر به خوبی آزمایش شده است و در توافق خوبی با دادههای تجربی است. اما مدل استاندارد پایان راه نیست و فیزیکدانها در حال جستجو برای فیزیک ورای مدل استاندارد هستند. در سال 1995، سنگینترین و آخرین فرمیون مدل استاندارد (کوارک تاپ) توسط آزمایشهای و (در آزمایشگاه فرمی در آمریکا) در تولید جفت كوارك تاپ – پادكوارك تاپ که از طریق برهمکنش قوی تولید میشوند، کشف شد. مدل استاندارد همچنین پیش بینی میکند که کوارکهای تاپ میتوانند به طور منفرد از طریق برهمکنش ضعیف در شتابدهندهی هادرونی تولید شوند. تاپ منفرد به سختی در آزمایشهای و قابل کشف و مشاهده هستند چون آهنگ تولید آن بسیار کم میباشد و بخصوص فرآیندهای زمینه، آهنگهای تولید خیلی بزرگتر از سیگنال دارند. با این وجود کشف کوارک تاپ منفرد توسط آزمایش در دسامبر 2005 گزارش شد. آهنگ تولید کوارک تاپ منفرد در 1 در ژنو در سوئیس خیلی زیاد است به طوریکه نه فقط به سادگی قابل کشف است بلکه ویژگیهای کوارک تاپ با دقت زیادی قابل آزمایش است.

1-2 مدل استاندارد
مدل استاندارد یک نظریه میدان پیمانهای است که بر اساس گروه تقارن میباشد. مدل استاندارد برهمکنشهای قوی، ضعیف و الکترومغناطیسی را از طریق مبادلهی میدانهای پیمانهای با اسپین یک توصیف میکند. مدل استاندارد بر نظریه میدانهای کوانتومی بنا نهاده شده است [1].
1-2-1 ذرات و نيروهاي بنيادي
مدل استاندارد توصيفي ديناميكي از ذرات بر حسب میدانهای برهمکنش کننده میباشد. هر میدان یک ذره را توصیف میکند و همه میدانها مطابق با اسپین آنها به دو دسته تقسیم میشوند. ذرات با اسپین فرمیون نامیده میشوند (کوارکها و لپتونها) و اجزای اصلی ماده مشاهده پذیر در اطراف ما هستند. تاكنون شش نوع کوارک كشف شده است که به سه نسل تقسیم ميشوند، و و . کوارکهای بالا دارای بار الکتریکی و کوارکهای پایین دارای بار الکتریکی هستند. نوکلئونهای داخل هستهی اتمها از نسل اول کوارکها ، ساخته شدهاند. کوارکهای نسل دوم و سوم نسبت به نسل اول دارای جرم بیشتری هستند و فقط در ابتدای خلقت جهان وجود داشتهاند. این ذرات ناپایدار هستند و به ذرات نسل اول واپاشی میکنند. در حال حاضر آنها در شتابدهندههای ذرات با انرژی زیاد قابل تولید هستند. جرم کوارکها از تقريبا (برای کوارک تا (برای کوارک تغییر میکند. همچنين در مدل استاندارد شش نوع لپتون نیز وجود دارد که به سه نسل قابل تقسیم ميشوند: و و . نوترینوها ذرات بدون بار الکتریکی هستند و لپتونهای باردار حامل بار و آنتي لپتونها حامل بار میباشند. مطابق آخرین اندازهگیریهای دقیق از نوسان نوترینوها، جرم نوترینوها غیر صفر است. مدل استاندارد ذرات بنيادي توصيفي براي اين مسئله ارائه نمي دهد..
در قالب مدل استاندارد ذراتی با اسپین صحیح هستند که بوزون نامیده میشوند و مسئول برهمکنش بین ذرات بنیادی هستند. مدل استاندارد سه نوع برهمکنش را بین ذرات توصیف میکند: الکترومغناطیسی، ضعیف و قوی. عامل انجام برهمکنشهای الکترومغناطیسی فوتونها میباشند که بدون بار الکتریکی و بدون جرم سكون هستند. ذرات و عامل برهمکنشهای ضعیف هستند. دارای بار الکتریکی و جرم حدود میباشند. و بوزونی خنثی با جرمي حدود میباشد. عامل انجام برهمکنشهای قوی گلوئونها هستند که بدون بار الکتریکی و جرم میباشند
مدل استاندارد شامل برهمکنشهای گرانشی نیست اما از آنجا که نیروی گرانشی برای ذرات سنگین اهمیت دارد، اثر آن برای ذرات بنیادی قابل اغماض است.
لاگرانژی هر برهمکنش تحت تبدیلاتی که متناظر با یک گروه تقارنی است، ناوردای پیمانهای میباشد. مدل استاندارد بر اساس گروه تقارنی است. علامت نشان دهنده ابر بار ، علامت يعني برهم كنش بين ذرات چپگرد اتفاق ميافتد و علامت به اين معناست كه در برهم كنش ذرات بار رنگ ميگيرند. نظریهی برهمکنشهای الکترومغناطیسی در اتحاد با نيروي ضعيف در گروه تقارنی نهفته است و نیروهای الکترومغناطیسی بین کوارکها و لپتونها را از طریق مبادله فوتونها توصیف میکند. در مدل استاندارد همهی فرمیونها میتوانند برهمکنش ضعیف کنند. برهمکنشهای ضعیف از طریق مبادلهی ، صورت میگیرند. جرم زیاد این ذرات برد اثر نیروهای ضعیف را به فواصل کوتاه محدود میکند.
یکی از جنبههای جالب مدل استاندارد ارائه فرمولبندی است که در آن نیروهای الکترومغناطیس با ضعیف وحدت مییابند. این وحدت با معرفی یک میدان اسکالر (میدان هیگز)، که تقارن را میشکند و برای بوزونهای و جرم تولید میکند و فوتونها را بدون جرم باقی میگذارد، انجام میشود.
يكي از ويژگيهاي برهمكنش هاي ضعيف گذار بين كواركها با طعمهاي متفاوت است. در واقع ويژه حالات برهمكنش ضعيف كواركهاي پايين با ويژه حالات جرم يكي نيستند. ويژه حالات برهمكنش ضعيف با ويژه حالات جرم توسط ماتريس به هم مربوط ميشوند. اين ماتريس يكاني است و شامل 9 عنصر ميباشد. عناصر اين ماتريس قدرت گذار هر كوارك به كوارك ديگر را معين ميكند (اين گذار از طريق مبادله يك رخ ميدهد)
كه به صورت زير است:
نظریهای که نیروهای قوی بین کوارکها و گلوئونها و وجود ساختارهای هادرونی (مزونها و باریونها) را توصیف میکند یک نظریهی میدان کوانتومی پیمانهای است كه کرومودینامیک کوانتومی نام دارد. مشابه با مفهوم بار الکتریکی که در الکترودینامیک کوانتومی وجود دارد، در 2 کوارکها حامل بارهای رنگ قرمز، سبز و آبی هستند. هر گلوئون حامل یک رنگ و یک پادرنگ است. حالات مقید مشاهده شده در طبیعت مثل مزونها (دو کوارکی) و باریونها (سه کوارکی) از نظر رنگی خنثی هستند. تفاوت اصلی بین نظریهی الکترودینامیک کوانتومی و ناشی از این واقعیت است که گلوئونها حامل بار رنگهستند در حالیکه فوتونها خنثی هستند. بنابراین گلوئونها برخلاف فوتونها میتوانند با هم جفت شوند و برهمکنش کنند. در فواصل بسیار کوتاه برهمکنشی بین کوارکها و گلوئونها نیست و آنها آزاد و بدون برهمکنش هستند. این ویژگی آزادی مجانبی نام دارد. در فواصل بلند قدرت برهمکنش قوی زیاد میشود تا کوارکها را داخل یک هادرون محدود3 کند. پتانسیل بین دو کوارکی که برهمکنش قوی میکنند بر حسب فاصله به صورت زیر میتوان نوشت:
(1-1)
برای مثال این محدودیت باعث میشود در برخورد پروتونها با انرژی بالا وقتی مقدار زیادی انرژی به یک کوارک داخل پروتون منتقل میشود، آن کوارک به صورت یک جت4 مشاهده شود. در واقع کوارک به خارج از پروتون حرکت میکند در نتیجه انرژی پتانسیل ذخیره شده در میدان رنگ بین کوارک و کوارکهای دیگر زیاد میشود تا وقتی که این انرژی به حد تولید یک جفت کوارک- پادکوارک برسد. این فرآیند ادامه مییابد تا انرژی منتقل شده به کوارک اولیه تمام شود. این فرآیند را به طور کلی هادرونیزاسیون5 مینامند. بنابراین به جای داشتن یک تک کوارک یا گلوئون یک خوشه حاوی هادرونهای مختلف داریم که همه در همان جهت حرکت کوارک اولیه حرکت میکنند. فرآیند هادرونیزاسیون برای همهی کوارکها به جز کوارک تاپ، که قبل از فرآیند هادرونیزاسیون واپاشي ميكند ، رخ ميدهد [1].
1-3 برچسبزني حالتهاي كوارك و لپتون
براي اينكه يك لاگرانژي فشرده و خوانا داشته باشيم بايد تعدادي نتنويسي تعريف كنيم. از آنجايي كه اين نتنويسيها بايد شامل اطلاعاتي شوند كه هر ذره چگونه تحت تقارنهاي داخلي تبديل مييابد و نيز به دليل ويژگيهاي فضا – زمان آنها، ما به تعداد زيادي نتنويسي احتياج داريم.
حالت الكترون را در نظر بگيريد كه بوسيله يك اسپينور توصيف ميشود. حالتهاي راستگرد و چپگرد اينگونه تعريف ميشوند:
(1-2)
كه در آن و عملگرهاي تصوير هستند و به صورت زيرتعريف ميشوند:
(1-3)
اين جداسازي چپگردي و راستگردي حالتهاي الكترون را ميتوانيم براي هر يك از فرميونها انجام دهيم. نكتهاي كه در اينجا وجود دارد اين است كه حالتهاي چپگرد و راستگرد تحت به صورت متفاوت تبديل ميشوند. الكترونهاي راستگرد در الكتروضعيف به صورت نمايش تكتايي هستند در حالي كه الكترونهاي چپگرد در الكتروضعيف به صورت نمايش دوتايي هستند؛ شريك آنها نوترينوهاي چپگرد ميباشند
را به عنوان يك تكتايي و را به عنوان يك دوتايي الكتروضعيف تعريف ميكنيم. حالت بالا به و حالت پايين به در فضاي ضعيف اشاره دارد . چرخش در فضاي ، تبديل ميكند.
كواركهاي بالا و پايين هم در يك روش مشابه رفتار ميكنند. تعريف ميكنيم:
(1-4)
ما كواركهاي چپگرد را در در يك نمايش دوتايي قرار ميدهيم. آنهايي كه راستگرد هستند دوباره به صورت تكتايي قرار ميگيرند:
(1-5)
شاخص را براي توصيف اينكه چگونه كواركها در فضاي رنگ تبديل ميشوند احتياج داريم. درحاليكه نمايش اساسي يك دوتايي با دو مولفه است، نمايش حالت اساسي يك سه تايي با سه مولفه است، بنابراين ما به شاخصهاي ، و كه ميتوانند 1، 2 يا 3 باشند براي برچسب زني حالتهاي رنگ احتياج داريم. گاهي اوقات براي آساني بحث به جاي شاخصهاي رنگ ، و از ، يا استفاده ميكنيم. اگر يك رنگ خاص در يك جهت است، تركيب مشابه با (ويژگي متقارن سازي) بدون رنگ است (تنها يك اسپين تكتايي ميتواند ساخته شود). لپتونها تك تقارن رنگ يگانه هستند و بنابراين ما براي آنها شاخص رنگ نمينويسيم.
گلوئونها رنگ را از يك كوارك به كوارك ديگر انتقال ميدهند. ويژگيهاي فضا – زمان يك گلوئون شبيه ويژگيهاي فضا – زمان يك فوتون است، اما گلوئونها بار رنگ حمل ميكنند و بنابراين ميتوانند آن را تغيير دهند. ذرات باردار ميتوانند تكانه خود را با گسيل يا جذب يك فوتون تغيير دهند اما آنها نميتوانند به اين روش بار الكتريكي خود را تغيير دهند. ذرات حامل رنگ (كواركها يا گلوئونها) ميتوانند هم تكانه و هم بار رنگشان را با گسيل يا جذب يك گلوئون تغيير دهند.
از آنجايي كه گلوئونها بارهاي رنگ ، يا را به ديگري ارتباط ميدهند، ما به نه گلوئون احتياج داريم. اما به هر حال تركيب تحت چرخش در فضاي رنگ ناوردا است (بنابراين بدون رنگ است) و در حقيقت هشت حالت بار رنگ مستقل براي گلوئونها وجود دارد; كه معمولا گفته ميشود هشت نوع گلوئون وجود دارد.
نكتهاي كه در اينجا وجود دارد اين است كه ما هنگامي كه راجع به لپتونها بحث ميكرديم هيچ صحبتي در مورد نوترينوي راستگرد نكرديم، اما بحث ما شامل كواركهاي راستگرد و بود كه اين مسئله ممكن است به اين بستگي داشته باشد كه بدون جرم هستند، در حالي كه فرميونهاي ديگر به نظر جرمدار ميرسند. اگر نوترينوهاي راستگرد وجود داشته باشد يا بسيار سنگين است ويا به اندازه كافي برهم كنش ندارد تا توليد و آشكارسازي شود.
از آنجايي كه حالتهاي چپگرد و راستگرد فرميوني در نمايش جداگانه قرار ميگيرند، نقض پاريته را به صورت صريح خواهيم داشت زيرا نظريه تحت بازگشتپذيري اجزاي اسپين نسبت به جهت حركت ناوردا نيست. پس مدل استاندارد نقض پاريته مشاهده شده در طبيعت را به طور جزئي و به شكل زيبايي توصيف ميكند.
در اينجا ما تنها يك نسل از فرميونها را در نظر گرفتيم. دو نسل ديگر، و ذرات سنگينتري هستند كه در شتابدهندهها يا برخوردهاي اشعه كيهاني ايجاد شدهاند و چون نيمه عمر كوتاهي دارند به سرعت به ذرات نسل اول واپاشي ميكنند [2].
1-4 لاگرانژي كوارك و لپتون
ابتدا یک لاگرانژی برای کوارکها و لپتونهای آزاد در نظر میگیریم. این لاگرانژی شامل یک جملهی جنبشی و یک جملهی جرمی برای میدان است:
(1-6)
كه در آن جرم ذره است.
برای توصیف برهمکنشها ما به یک نظريه احتیاج داریم که تقارنهای پیمانهای را در نظر بگیرد. این به این معنی است که لاگرانژی باید تحت تبدیلات تقارن ناوردا بماند. یک تبدیل تقارن بوسیلهی یک عملگر یکانی توصیف میشود که روی میدان به صورت عمل میکند. این عملگر میتواند به صورت ترکیب خطی از مولد گروه، با ضرايب حقيقي بيان شو:.
(1-7)
از آنجایی که نظريه پیمانهای موضعی است، ضرایب در فضا- زمان به مکان بستگی خواهند داشت. جبر مولدها بوسیله رابطهی زیر تعریف میشود:
(1-8)
كه در آن ضرايب ساختار گروه هستند. چون تبدیل يكاني است جملهی جرمی تحت تبدیل ناوردا خواهد ماند. اما اگر ما بخواهیم یک جملهی جنبشی برای لاگرانژی بسازیم که تحت تبدیل تقارن ناوردا بماند باید مشتق جزئی به مشتق هموردای زیر تبديل شود:
(1-9)
كه ما در اينجا ميدان پيمانهاي داريم. تحت یک تبدیل پیمانهای، مشتق هموردا به این شکل تبدیل میشود:
(1-10)
که این بدان معنی است که مشتق هموردا روی یک میدان مانند میدان خودش به شکل عمل ميكند. بنابراین جملهی جنبشی فرمیون در لاگرانژی هم ناوردای پیمانهای خواهد بود. برای ساختن جملهی جنبشی برای میدانهای پیمانهای ما یک تانسور قدرت میدان معرفی میکنیم:
(1-11)
که به شکل تبدیل میشود. بنابراین ما قادریم که جملهی جنبشی میدانهای پیمانهای را به این شکل بنویسیم:
(1-12)
که در آن تریس، جمع روی شاخص گروه است. این جمله به نوبه خود یک جملهی محتمل است که در لاگرانژی شرکت میکند. ما بالاخره میتوانیم لاگرانژی را برای یک نظريه پیمانهای را به این شکل بنویسیم:
(1-13)
در مدل استاندارد ما برای هر کوارک و لپتون یک میدان داریم.گروه تقارني كلي ميباشد. گروه فقط روی کوارکها عمل میکنند و توصیف کنندهی نیروی قوی هستند و میدانهای پیمانهای متناظر گلوئونها هستند و گروه برهمكنش هاي الكتروضعيف را توصيف ميكنند [3].
1-5 QCD
نظريهاي که برهمکنشهای قوی را توصیف میکند یا به اختصار نامیده میشود. نظريه بوسیلهی گروه پيمانهاي توصیف میشود. بوزونهای پیمانهای متناظر گلوئونها هستند. این گروه تقارن فقط روی کوارکها که ميتوانند سه بار رنگ حمل كنند عمل میکند، كه نمايش زير ميدان كوارك در نظرگرفته ميشود:
(1-14)
اگر مولد گروه را به صورت و میدان گلوئونها را به صورت در نظر بگیریم، مشتق هموردا را میتوانیم اینگونه بنویسیم:
(1-15)
ثابت جفتشدگی برهمکنشهای قوی 6 است. با وارد کردن این به قسمت انرژي جنبشی لاگرانژی کوارک داریم:
(1-16)
از اينجا ميتوانيم ورتكس برهمكنش كوارك گلوئون را استخراج كنيم:
شكل (1-1)- ورتكس پايه كوارك گلوئون.
از آنجايي كه يك نظريه پيمانهاي غيرآبلي است، جملههاي بيشتري در لاگرانژي ظاهر خواهند شد:
(1-17)
جمله جنبشي براي ميدانهاي پيمانهاي شامل قسمت جنبشي گلوئون بعلاوهي جملات خود – برهمكنش گلوئونها خواهد بود. از آنجايي كه اين جمله به تنهايي نميتواند انتشارگر گلوئون را به دست دهد، وجود جملات ديگر ضروري ميشود.
در شكلهاي (1-2)، (1-3) و (1-4) نمودارهاي فاينمن7 مربوط به انتشارگرها، توابع موج و راسهاي درگير در برهمكنشها قرار داده شده است. در اين شكلها بوزونها با خطوط نقطه چين و فرميونها با خطوط پرنشان داده شدهاند [3].

شكل (1-2)- قوانين فاينمن مربوط به انتشارگرهاي بوزونها و فرميونهاي مدل استاندارد.
شكل (1-3)- قواعد فاينمن مربوط به توابع موج فرميونها روي ويژه حالتها (4 شكل بالا) و توابع موج گلوئونها روي ويژه حالتها (2شكل پايين).
شكل (1-4)- قواعد فاينمن از نظريه پيمانهاي قوي براي راس سه گلوئوني.
1-6 کوارک تاپ
در مدل استاندراد کوارک تاپ شریک کوارک است. بعد از کشف کوارک در سال ، که اولین شاهد بر نسل سوم کوارکها بود، فیزیکدانها منتظر مشاهدهی کوارک تاپ بودند. در حدود سال بعد شتابدهنده تواترون8 در آزمایشگاه فرمی در آمریکا توانست انرژی لازم برای تولید کوارک تاپ را فراهم و آن را تولید کند. سرانجام آزمایشهای و آزمایشگاه فرمی وجود کوارک تاپ را در سال گزارش کردند. در ، کوارکهای تاپ میتوانند هم به صورت جفت از طریق برهمکنش قوی و هم به صورت منفرد از طریق برهمکنش ضعیف تولید شوند. کانال تولید جفت با سطح مقطع، کانال غالب در تولید کوارک تاپ میباشد. جفت از طریق فرآیندهای نابودی کوارک- پادکوارک و اتصال گلوئون- گلوئون تولید میشود. سه مکانیزم متفاوت برای تولید کوارک تاپ منفرد در وجود دارد، کانال (که بزرگترین چشمهی تولید کوارک تاپ منفرد است)، کانال و کانال [1].
1-6-1 ویژگیهای کوارک تاپ جرم و نیمهعمر: جرم کوارک تاپ توسط آزمایشهای و با دقت خوبی اندازهگیری شده است. این جرم که خیلی نزدیک به مقیاس شکست خود به خودی تقارن الکترو ضعيف است، باعث اهمیت کوارک تاپ در جستجو برای هر گونه انحراف از مدل استاندارد میشود. در مدل استاندارد پهنای کوارک تاپ توسط رابطهی زیر داده میشود:
(1-18)
که 9 ثابت جفتشدگی فرمی، عنصر ماتریس ، جرم کوارک تاپ، جرم بوزون و ثابت جفتشدگی برهمکنش قوی است. جرم زیاد کوارک تاپ باعث کوتاه شدن نیمهعمر آن میشود . این خيلی کوتاهتر از مقیاس زمانی تشکیل یک حالت هادرونی در است. بنابراین کوارک تاپ قبل از فرآیند هادرونیزاسیون از طریق برهمکنش ضعیف واپاشی میکند و در نتیجه کوارک تاپ به صورت یک کوارک آزاد وجود دارد.
شکل (1-5)- واپاشی کوارک تاپ.
واپاشی: با فرض وجود سه نسل کوارک، بسیار نزدیک به یک است در حالیکه بسیار کوچک است. بنابراین مدل استاندارد پیشبینی میکند که کوارک تاپ با یک نسبت شاخه
ای10 خیلی نزدیک به یک به یک بوزون و یک کوارک واپاشی میکند.
نسبتهای شاخهای واپاشی تاپ به صورت زیر است:
(1-19)
نسبت شاخهای واپاشی کوارک تاپ به یک جفت کوارک- پادکوارک بزرگتر از واپاشی لپتونی است دارد چون هر كوارك داراي سه رنگ ميباشد [1].
1-6-2 تولید زوج کوارک تاپ از طریق برهمکنشهای قوی
کوارک تاپ در برخوردهای هادرونی به صورت عمده از برهمكنشهاي قوی ایجاد میشود. نابودي كوارك – پادكوارك و همجوشي11 گلوئونها دو زير – فرآيند توليد كوارك تاپ از طريق برهمكنش قوي است. در شكل 1–6 دیاگرامهای فاینمن مربوطه آورده شده است.

شکل (1-6)- تولید کوارک تاپ در برهمکنشهای قوی به صورت نابودی کوارک و پاد کوارک و همجوشی گلوئونها.
با استفاده از مدل پارتوني12 ميتوان نشان داد كه در تواترون سهم نابودي كوارك و پادكوارك و در، سهم همجوشي گلوئونها غالب است [1]. در جدول (1-1) براي و با توجه به انرژي باريكه، سهم نسبي زير – فرآيندهاي همجوشي گلوئون در بين و و براي تقريبا است كه تقريبا برعكس تواترون ميباشد. همچنين در جدول (1-2) اندازهگيريهاي آزمايشگاهي دقيق از سطح مقطع تاپ جمعآوري شده است [4].
جدول (1-1)- سطح مقطعهاي فرآيندهاي توليد زوج كوارك تاپ در انرژيهاي مركز جرم متفاوت.
جدول (1-2)- از اندازهگيريهاي آزمايشگاهي تواترون و در اين جدول استفاده شده است. عدم قطعيت آماري، سيستماتيك و درخشندگي براي عدم قطعيت كل در ستون آخر اضافه شده است.
1-6-3 فرآیندهای تولید کوارک تاپ منفرد
در مدل استاندارد، تولید کوارک تاپ منفرد از طریق برهمکنش ضعیف رخ میدهد. در برخورددهندهی سه فرآیند برای تولید کوارک تاپ منفرد وجود دارد. نمودارهای فاینمن متناظر برای تولید کوارک تاپ منفرد در شکل 1-7 نشان داده میشوند.
شكل (1-7)- فرآيندهاي توليد كوارك تاپ منفرد.
كانال- بزرگترين چشمه توليد كوارك تاپ منفرد در است كه داراي سطح مقطع قابل مقايسه با سطح مقطع ميباشد.
كانال- در حالت اوليه اين فرآيند شريكهاي آيزواسپيني كوارك وجود دارد. در حالت نهايي يك كوارك با انرژي بالا و يك كوارك تاپ توليد ميشوند.
كانال- در حالت اوليه اين فرآيند يك كوارك از درياي كواركي يك پروتون و يك گلوئون از درياي كواركي پروتون ديگر ميآيند. محصولات اين فرآيند يك بوزون حقيقي و يك كوارك تاپ هستند.
سطح مقطعهاي توليد كوارك تاپ و پادكوارك تاپ در كانال و در برابر نيستند. از آنجايي كه يك ماشين برخورد دهنده پروتون – پروتون ميباشد و پروتونها داراي كوارك ظرفيت بيشتر از هستند، كواركهاي تاپ از پادكواركهاي تاپ بيشتر توليد ميشوند [1]. سطح مقطعهاي فرآيندهاي توليد كوارك تاپ منفرد در جدول (1-3) داده شده است [4].
جدول (1-3)- سطح مقطعهاي فرآيندهاي توليد كوارك تاپ منفرد با در با انرژي مركز جرم وو در تواترون با انرژي مركز جرم .
1-7 نقاط ضعف مدل استاندارد



قیمت: تومان

دسته بندی : پایان نامه

پاسخ دهید